
Twin GCD
Description
You are given an array A of size N . Define f(i) as the number of ways to choose
two subsets B,C ⊂ [1 . . . N] such that:

1. B ∩ C = ∅,
2. gcd(A[B1], A[B2], · · · , A[B|B|]) = i, and
3. gcd(A[C1], A[C2], · · · , A[C|C|]) = i.

In other words, the number of ways to choose two subsequences each having
GCD equal to i and disjoint. Here, we define GCD(∅) = 0.

Calculate
∑N

i=1 i · f(i) modulo 998 244 353.

Constraints
• 2 ≤ N ≤ 100 000
• 1 ≤ A[i] ≤ N

Input Format
The input is given in the following format:

N
A[1] A[2] ... A[N]

Output Format
Output a single line containing

∑N
i=1 i · f(i) modulo 998 244 353.

Example Input 1
3
3 3 3

Example Output 1
36

Example Input 2
3
3 1 2

Example Output 2
2

1

Example Input 3
9
4 2 6 9 7 7 7 3 3

Example Output 3
10858

Explanation
In the first example, all subsequences of A have a GCD of 3. There are 12
number of ways to choose B and C, where 6 of them are:

• B = {1}, C = {2}.
• B = {1}, C = {2, 3}.
• B = {1}, C = {3}.
• B = {1, 2}, C = {3}.
• B = {1, 3}, C = {2}.
• B = {2}, C = {3}.

The remaining 6 can be obtained by swapping B and C from the above.

2

The next pages contain solution(s) and other things related to the problem.

3

Solution
While we have the constraint A[i] ≤ N , we originally put it to make the problem
description a bit simpler. In fact, our solution can be modified to remove that
assumption, as long as we can bound A[i] to be at most 100 000. To make a
distinction, we shall denote max(A[i]) as M .

First, there is a straightforward DP solution with O(M3 logM) time complexity,
which may work if M ≤ 100.

Next, the most common way to solve counting problem related to GCD can be
formulated as the following. First, we define the following two functions:

• g(i): number of ways to count the object we want, with their GCD being
a multiple of i.

• f(i): number of ways to count the object we want, with their GCD being
exactly i.

Usually g(i) is easy to compute, but f(i) is not. Yet, we can calculate f(i) from
g(i) as shown below.

for i = M ; i >= 1 ; i -= 1:
f[i] = g(i)
for j = 2*i ; j <= M ; j += M:

f[i] -= f[j]

After that, we can simply use the array f [i] to calculate the answer.

Suppose that we define the object we want to be “two disjoint subsequences
each with GCD = i”, then we can do the following: Define ci as the number A’s
element which is a multiple of i. Without going into detail, ci for all 1 ≤ i ≤M
can be calculated in O(N +M logM). Then, using inclusion-exclusion, we can
define g(i) as

g(i) = 3ci − 2 · 2ci + 1

While this works in the first example, it will fail in the second example. This is
because the way we calculate f(i), instead of getting the count of “two disjoint
subsequences each with GCD = i”, what we will get is “two disjoint subsequences,
one having GCD = i, and the other having GCD a multiple of i”.

Before going into the full solution, we will show a quadratic solution which can
be improved into the full solution.

In a similar manner as before, we will define the function g and f but with two
parameters.

• g(i, j): number of ways to choose B and C such that they are disjoint,
GCD(B) is a multiple of i, and GCD(C) is a multiple of j.

• f(i, j): similar to g(i, j), but instead of a multiple, both are exactly.

4

In this case, g(i, j) is

g(i, j) = 2ci−cLCM(i,j)2cj−cLCM(i,j)3cLCM(i,j) − 2ci − 2cj + 1

Meanwhile, f(i, j) can be computed as the following:

for i = M ; i >= 1 ; i -= 1
for j = M ; j >= 1 ; j -= 1

f[i, j] = g(i, j)
for k = i ; k <= M ; k += i

for l = j ; l <= M ; l += j
if i == k and l == j: continue
f[i, j] -= f[k, l]

After that, notice that f(i) in the problem statement is exactly f(i, i) here. Thus,
we can use it to calculate the final answer. The time complexity of this solution
is O(M2 log2 M), which may pass if M ≤ 1 000.

Now, a natural follow-up from above solution is “can we somehow use Möbius
function to solve this?” In one dimension the Möbius function, µ(i), can be used
to solve it as below:

for i = 1 ; i <= M ; i += 1
f[i] = 0
for j = i ; j <= M ; j += i

f[i] += g(j) * mu(j/i)

One way to see it, µ(j/i) is the contribution of g(j) to f(i).

As we cannot make a one dimensional solution to work, we shall define Möbius
function in two dimension. Let’s define µ(i, j) as the contribution of g(i, j) to
f(1, 1). We can prove the following claim:

Claim: µ(i, j) = µ(i)µ(j).

The proof (sketch) is deferred to appendix.

Next, µ(i) for all 1 ≤ i ≤ M can be precomputed in O(M logM). Finally, we
can use µ(i, j) to make the following solution:

for gcd = 1 to M:
f[gcd] = 0
for a = 1 to M / gcd:

for b = 1 to M / gcd:
f[gcd] += g(a*gcd, b*gcd) * mu(a, b)

The time complexity of the nested loops will be O(
∑M

i=1(M/i)2) = O(M2).
However, within the function g(a · gcd, b · gcd) we need to invoke GCD(a, b) to
calculate their LCM because a and b may not be coprime. Thus, the overall time
complexity of this solution will be O(M2 logM), which may pass if M ≤ 2 000.

5

We note that it is possible to kick the O(logM) factor by memoizing the result
of GCD(a, b). Hence, it is possible to improve the previous solution into O(M2),
which may pass if M ≤ 5 000.

After this, we will show how to improve the previous solution. In a nutshell,
previously we calculate f(i) in O((M/i)2). We will show a method to calculate
f(i) in O((M/i) log (M/i)), which, when summed for all 1 ≤ i ≤M , will gives
us O(M log2 M).

First, notice that in the previous solutions, we implicitly transform the calculation
of f(i) into a calculation of f(1) of the following instance:

• Remove all elements of A which are not divisible by i.
• Divide the remaining elements by i.
• (Note) the maximum value in this instance is M/i.

Hence, to make discussion easier, from here on we assume that we are dealing
with the calculation of f(1). Abusing the notation, denote M as the maximum
value in the current instance we are dealing with.

Note that f(1) can be written as the following:

f(1) =
M∑

i=1

M∑
j=1

µ(i, j) · g(i, j)

We will rewrite the formula into a summation of the following four terms:

M∑
i=1

M∑
j=1

µ(i, j) · 2ci−cLCM(i,j)2cj−cLCM(i,j)3cLCM(i,j) (1)

−
M∑

i=1

M∑
j=1

µ(i, j) · 2ci (2)

−
M∑

i=1

M∑
j=1

µ(i, j) · 2cj (3)

+
M∑

i=1

M∑
j=1

µ(i, j) (4)

First, let’s simplify the 4th term.

6

M∑
i=1

M∑
j=1

µ(i, j) =
M∑

i=1

M∑
j=1

µ(i)µ(j)

=
M∑

i=1
µ(i)

M∑
j=1

µ(j)

= (
M∑

i=1
µ(i))2

Because
∑M

i=1 µ(i) can be calculated in O(M), the 4th term can be calculated
in O(M).

Next, we will simplify the 2nd term. Note that the 3rd term is basically the
same as the 2nd term.

M∑
i=1

M∑
j=1

µ(i, j) · 2ci =
M∑

i=1

M∑
j=1

µ(i)µ(j) · 2ci

=
M∑

i=1
(µ(i) · 2ci)

M∑
j=1

µ(j)

= (
M∑

i=1
µ(i) · 2ci)(

M∑
i=1

µ(i))

Because
∑M

i=1 µ(i) · 2ci and
∑M

i=1 µ(i) can be calculated in O(M), thus the 2nd
term and the 3rd term can be calculated in O(M).

Finally, the tedious part. We will attempt to simplify the 1st term. First, we
can rewrite it into the following:

M∑
i=1

M∑
j=1

µ(i, j)2ci2cj 3cLCM(i,j)2−2cLCM(i,j)

We will split it into 2 cases: When LCM(i, j) ≤M and when LCM(i, j) > M .
We first focus on the first case.

7

=
M∑

i=1

M∑
j=1

µ(i, j)2ci2cj 3cLCM(i,j)2−2cLCM(i,j)

=
M∑

k=1
3ck 2−2ck

∑
i|k

∑
LCM(i,j)=k

µ(i)µ(j)2ci2cj

We will now calculate the inner part of the formulation (i.e the summation over
all pair i and j). Define:

• d(k) as the sum of µ(j)2cj for all j which divides k.
• l(k) as d(k)2.

Observe that l(k) “almost” correctly calculates the inner part of the formula. l(k)
will be the sum for all pair i, j such that LCM(i, j) divides k. Meanwhile, what
we really need is the sum for all pair i, j such that LCM(i, j) = k. However, we
can actually obtain this from l(k) and l(i) for all i which divides k. Basically, it
will be similar to the calculation of f[] before, just in the reversed order. Hence,
we can calculate the first case in O(M logM).

For the second case, observe that when LCM(i, j) > M , then:

• cLCM(i,j) = 0, thus 3cLCM(i,j)2−2cLCM(i,j) = 1.
• We already know the answer for all i, j such that lcm(i, j) ≤M from the

first case. Thus, we can just calculate ((
∑N

i=1 d(i))2) and then substract
the answer of the first case from it.

Hence, after solving the first case, we can also calculate the second case in O(M).

As we can calculate all four terms in O(M logM), then f(1) can be calculated in
O(M logM). Hence, f(i) can be calculated in O((M/i) log(M/i)), giving us a
solution with O(M log2 M) time complexity, which may pass M ≤ 100 000. Do
note that some parts of the implementation are not optimized, e.g the calculation
of the powers of 2 and 3. Hence, the actual time complexity of the example
implementation is closer to O(M logM(logMOD + logM)), which is still good
enough.

Discussions
Related to the claim that µ(i, j) = µ(i)µ(j): this looks relatively simple, so it
may be well-known? Note that I actually do not have that much knowledge in
this area. However, when I googled I hardly see discussions on two dimensional
case like this. The closest property I know is that µ(ij) = µ(i)µ(j) when i and j
are coprime. However, the claim in this problem works for all pair i and j.

8

Author
• Muhammad Ayaz Dzulfikar, National University of Singapore

9

Appendix
µ(i, j) = µ(i)µ(j) Proof Sketch
First, let’s see one way to calculate Möbius function in one dimension.

let m be an array of size i
m[i] = 1
for j = i ; j >= 1 ; j--:

m[j] = 0
for k = 2*j ; k <= i ; k += j:

m[j] -= m[k]

Observe that in the end, m[1] will be µ(i). More generally, for each 1 ≤ j ≤ i,
m[j] is µ(i/j) if j divides i and 0 otherwise.

Claim 1: for each j, the sum of m[k] for all k multiple of j is 0.

Proof Sketch: well-known from the property of Möbius function.

Claim 2: if we start with m[i] being x, then m[j] will be µ(i/j) · x.

Proof Sketch: clear from the algorithm.

Next, we will calculate µ(i, j). Similar to the one dimensional case, we can do
the following:

let m be an array of size i x j
m[i][j] = 1
for a = i ; k >= 1 ; k--:

for b = j ; b >= 1 ; b--:
if a == i and b == j: continue
m[a][b] = 0
for k = a ; k <= i ; k += a:

for l = b ; l <= j ; l += b:
if a == k and b == l: continue
m[a][b] -= m[k][l]

Like the one dimensional case, m[1][1] will be µ(i, j) and for each 1 ≤ a ≤
i, 1 ≤ b ≤ j, m[a][b] will be µ(i/a, j/b). Note that from here, we assume that a
divides i and b divides j (as otherwise, m[a][b] must be 0).

We want to note that here we already have a way to calculate µ(i, j), but its
time complexity is pretty big (i.e superquadratic). This is another motivation
why we want to show µ(i, j) = µ(i)µ(j), as this way is easier to compute.

Claim 3: m[i][b] will be µ(j/b) and m[a][j] will be µ(i/a).

Proof Sketch: clear from the algorithm, which reduces into the one dimensional
case.

10

Now, we will prove our claim that µ(i, j) = µ(i)µ(j). We shall use induction:
on row a, the value of m[a][b] will be µ(i/a)µ(j/b). Our base case starts from
row i, which is proven by Claim 3.

Do induction on row a < i. Our loop will process row a, 2a, · · · , i. By our
induction hypothesis and Claim 1, the summation on row 2a, · · · , i must be
0. Thus, we only need to calculate the summation on row a. However, notice
that this is basically the one dimensional case, with m[j] being m[a][j] which
is µ(i/a). Due to Claim 2, m[a][b] will be µ(i/a)µ(j/b). Thus, the induction
works.

Hence, m[1][1] will be µ(i)µ(j). Thus, our claim is proven.

11

	Twin GCD
	Description
	Constraints
	Input Format
	Output Format
	Example Input 1
	Example Output 1
	Example Input 2
	Example Output 2
	Example Input 3
	Example Output 3
	Explanation

	Solution
	Discussions
	Author
	Appendix
	\mu(i, j) = \mu(i)\mu(j) Proof Sketch

